4.7 Article

Tryptophan and purine metabolites are consistently upregulated in the urinary metabolome of patients diagnosed with gestational diabetes mellitus throughout pregnancy: A longitudinal metabolomics study of Chinese pregnant women part 2

Journal

CLINICA CHIMICA ACTA
Volume 468, Issue -, Pages 126-139

Publisher

ELSEVIER
DOI: 10.1016/j.cca.2017.02.018

Keywords

Gestational diabetes; Urine; Longitudinal study; Multilevel analysis; Tryptophan metabolism; Purine metabolism; Metabolomics

Ask authors/readers for more resources

Background: Gestational diabetes mellitus (GDM) is a pathological state of glucose intolerance associated with adverse pregnancy outcomes and an increased risk of developing maternal type 2 diabetes later in life. The mechanisms underlying GDM development are not fully understood. We examined the pathophysiology of GDM through comprehensive metabolic profiling of maternal urine, using participants from a longitudinal cohort of normal pregnancies and pregnancies complicated by GDM. Methods: Based on ultra-performance liquid chromatography/hybrid quadrupole time-of-flight mass spectrometry, an untargeted metabolomics study was performed to explore the differences in the urinary metabolome of GDM cases and healthy controls over the course of pregnancy. Multilevel statistical approaches were employed to address the complex metabolomic data obtained from a longitudinal cohort. Results: The results indicated that tryptophan and purine metabolism was associated with GDM. The tryptophan-kynurenine pathway was activated in the GDM subjects before placental hormones or the fetoplacental unit could have produced any physiological effect. Hypoxanthine, xanthine, xanthosine, and 1-methylhypoxanthine were all elevated in the urine metabolome of subjects with GDM. Catabolism of purine nucleosides leads ultimately to the production of uric acid, which discriminated the subjects with GDM from controls. Conclusions: The results support the notion that GDM may be a predisposed condition, or prediabetic state, which is manifested during pregnancy. This challenges the conventional view of the pathogenesis of GDM, which assumes placental hormones are the major causes of insulin resistance in GDM. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available