4.7 Article

Limitations of Rapid Diagnostic Testing in Patients with Suspected Malaria: A Diagnostic Accuracy Evaluation from Swaziland, a Low-Endemicity Country Aiming for Malaria Elimination

Journal

CLINICAL INFECTIOUS DISEASES
Volume 64, Issue 9, Pages 1221-1227

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/cid/cix131

Keywords

malaria; Rapid Diagnostic Test; diagnostic accuracy; low transmission; subpatent infection

Funding

  1. Swaziland Ministry of Health
  2. Bill and Melinda Gates Foundation [A121292]
  3. National Institute of Allergy and Infectious Diseases, National Institutes of Health [AI101012]
  4. Burroughs Wellcome Fund/American Society for Tropical Medicine and Hygiene Fellowship [A120079]
  5. Horchow Family Fund [5300375400]
  6. Gilead [NCE A122737]

Ask authors/readers for more resources

Background. The performance of Plasmodium falciparum-specific histidine-rich protein 2-based rapid diagnostic tests (RDTs) to evaluate suspected malaria in low-endemicity settings has not been well characterized. Methods. Using dried blood spot samples from patients with suspected malaria at 37 health facilities from 2012 to 2014 in the low-endemicity country of Swaziland, we investigated the diagnostic accuracy of histidine-rich protein 2-based RDTs using qualitative polymerase chain reaction (PCR) (nested PCR targeting the cytochrome b gene) and quantitative PCR as reference standards. To explore reasons for false-negative and/or false-positive results, we used pfhrp2/3-specific PCR and logistic regression analyses of potentially associated epidemiological factors. Results. From 1353 patients, 93.0% of RDT-positive (n = 185) and 31.2% of RDT-negative samples (n = 340) were available and selected for testing. Compared with nested PCR, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of RDTs were 51.7%, 94.1%, 67.3%, and 89.1%, respectively. After exclusion of samples with parasite densities <100/mu L, which accounted for 75.7% of false-negative results and 33.3% of PCR-detectable infections, the sensitivity, specificity, PPV, and NPV were 78.8%, 93.7%, 62.3%, and 97.1%. Deletions of pfhrp2 were not detected. False-positivity was more likely during the second year and was not associated with demographics, recent malaria, health facility testing characteristics, or potential DNA degradation. Conclusions. In the low-transmission setting of Swaziland, we demonstrated low sensitivity of RDT for malaria diagnosis, owing to an unexpectedly high proportion of low-density infection among symptomatic subjects. The PPV was also low, requiring further investigation. A more accurate point-of-care diagnostic may be needed to support malaria elimination efforts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available