4.7 Article

Improving dielectric properties of SaTiO3/poly(vinylidene fluoride) composites by employing core-shell structured BaTiO3@Poly(methylmethacrylate) and BaTiO3@Poly(trifluoroethyl methacrylate) nanoparticles

Journal

APPLIED SURFACE SCIENCE
Volume 403, Issue -, Pages 71-79

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2017.01.121

Keywords

Core-shell structure; Nanocomposites; Poly(vinylidene fluoride); Dielectric properties

Funding

  1. National Natural Science Foundation of China [51273013]
  2. Major Project for Polymer Chemistry and Physics Subject Construction from Beijing Municipal Education Commission (BMEC)

Ask authors/readers for more resources

Polymer based dielectric composites were fabricated through incorporation of core-shell structured BaTiO3 (BT) nanoparticles into PVDF matrix by means of solution blending. Core-shell structured BT nanoparticles with different shell composition and shell thickness were prepared by grafting methacrylate monomer (MMA or TFEMA) onto the surface of BT nanoparticles via surface initiated atom transfer radical polymerization (SI-ATRP). The content of the grafted polymer and the micro-morphology of the core-shell structured BT nanoparticles were investigated by thermo gravimetric analyses (TGA) and transmission electron microscopy (TEM), respectively. The dielectric properties were measured by broadband dielectric spectroscopy. The results showed that high dielectric constant and low dielectric loss are successfully realized in the polymer based composites. Moreover, the type of the grafted polymer and its content had different effect on the dielectric constant. In detail, the attenuation of dielectric constant was 16.6% for BT@PMMAI/PVDF and 10.7% for BT@PMMA2/PVDF composite in the range of 10 Hz to 100 kHz, in which the grafted content of PMMA was 5.5% and 8.0%, respectively. However, the attenuation of dielectric constant was 5.5% for BT@PTFEMA1/13VDF and 4.0% for BT@PTFEMA2/PVDF composite, in which the grafted content of PTFEMA was 1.5% and 2.0%, respectively. These attractive features of BT@PTFEMA/PVDF composites suggested that dielectric ceramic fillers modified with fluorinated polymer can be used to prepare high performance composites, especially those with low dielectric loss and high dielectric constant. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available