4.3 Review

From bacteria to chloroplasts: evolution of the chloroplast SRP system

Journal

BIOLOGICAL CHEMISTRY
Volume 398, Issue 5-6, Pages 653-661

Publisher

WALTER DE GRUYTER GMBH
DOI: 10.1515/hsz-2016-0292

Keywords

chloroplast; evolution; protein transport; signal recognition particle (SRP); thylakoid

Funding

  1. Deutsche Forschungsgemeinschaft [SFB 642]

Ask authors/readers for more resources

Chloroplasts derive from a prokaryotic symbiont that lost most of its genes during evolution. As a result, the great majority of chloroplast proteins are encoded in the nucleus and are posttranslationally imported into the organelle. The chloroplast genome encodes only a few proteins. These include several multispan thylakoid membrane proteins which are synthesized on thylakoid-bound ribosomes and cotranslationally inserted into the membrane. During evolution, ancient prokaryotic targeting machineries were adapted and combined with novel targeting mechanisms to facilitate post-and cotranslational protein transport in chloroplasts. This review focusses on the chloroplast signal recognition particle (cpSRP) protein transport system, which has been intensively studied in higher plants. The cpSRP system derived from the prokaryotic SRP pathway, which mediates the cotranslational protein transport to the bacterial plasma membrane. Chloroplasts contain homologs of several components of the bacterial SRP system. The function of these conserved components in post- and/or cotranslational protein transport and chloroplast-specific modifications of these transport mechanisms are described. Furthermore, recent studies of cpSRP systems in algae and lower plants are summarized and their impact on understanding the evolution of the cpSRP system are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available