4.7 Article

Novel Bacterial Topoisomerase Inhibitors with Potent Broad-Spectrum Activity against Drug-Resistant Bacteria

Journal

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY
Volume 61, Issue 5, Pages -

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AAC.02100-16

Keywords

topoisomerase; DNA gyrase; antibiotic; ESKAPE

Funding

  1. Innovative Medicines Initiative Joint Undertaking [115583]
  2. European Union's seventh framework program
  3. National Institutes of Health
  4. National Institute of Allergy and Infectious Diseases [HHSN272201100009I, HHSN272201100012I]

Ask authors/readers for more resources

The novel bacterial topoisomerase inhibitor class is an investigational type of antibacterial inhibitor of DNA gyrase and topoisomerase IV that does not have cross-resistance with the quinolones. Here, we report the evaluation of the in vitro properties of a new series of this type of small molecule. Exemplar compounds selectively and potently inhibited the catalytic activities of Escherichia coli DNA gyrase and topoisomerase IV but did not block the DNA breakage-reunion step. Compounds showed broad-spectrum inhibitory activity against a wide range of Gram-positive and Gram-negative pathogens, including biodefence microorganisms and Mycobacterium tuberculosis. No cross-resistance with fluoroquinolone-resistant Staphylococcus aureus and E. coli isolates was observed. Measured MIC90 values were 4 and 8 mu g/ml against a panel of contemporary multidrug-resistant isolates of Acinetobacter baumannii and E. coli, respectively. In addition, representative compounds exhibited greater antibacterial potency than the quinolones against obligate anaerobic species. Spontaneous mutation rates were low, with frequencies of resistance typically <10(-8) against E. coli and A. baumannii at concentrations equivalent to 4-fold the MIC. Compound-resistant E. coli mutants that were isolated following serial passage were characterized by whole-genome sequencing and carried a single Arg38Leu amino acid substitution in the GyrA subunit of DNA gyrase. Preliminary in vitro safety data indicate that the series shows a promising therapeutic index and potential for low human ether-a-go-go-related gene (hERG) inhibition (50% inhibitory concentration [IC50], >100 mu M). In summary, the compounds' distinct mechanism of action relative to the fluoroquinolones, whole-cell potency, low potential for resistance development, and favorable in vitro safety profile warrant their continued investigation as potential broad-spectrum antibacterial agents.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available