4.8 Article

Attenuation of Synaptic Potentials in Dendritic Spines

Journal

CELL REPORTS
Volume 20, Issue 5, Pages 1100-1110

Publisher

CELL PRESS
DOI: 10.1016/j.celrep.2017.07.012

Keywords

-

Categories

Funding

  1. National Institute of Mental Health [R01MH101218, R01MH100561]
  2. US Army Research Laboratory
  3. US Army Research Office [W911NF-12-1-0594]

Ask authors/readers for more resources

Dendritic spines receive the majority of excitatory inputs in many mammalian neurons, but their biophysical properties and exact role in dendritic integration are still unclear. Here, we study spine electrical properties in cultured hippocampal neurons using an improved genetically encoded voltage indicator (ArcLight) and two-photon glutamate uncaging. We find that back-propagating action potentials (bAPs) fully invade dendritic spines. However, uncaging excitatory post-synaptic potentials (uEPSPs) generated by glutamate photorelease, ranging from 4 to 27 mV in amplitude, are attenuated by up to 4-fold as they propagate to the parent dendrites. Finally, the simultaneous occurrence of bAPs and uEPSPs results in sublinear summation of membrane potential. Our results demonstrate that spines can behave as electric compartments, reducing the synaptic inputs injected into the cell, while receiving bAPs are unmodified. The attenuation of EPSPs by spines could have important repercussions for synaptic plasticity and dendritic integration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available