4.7 Article

Parameter estimation for binary black holes with networks of third-generation gravitational-wave detectors

Journal

PHYSICAL REVIEW D
Volume 95, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.95.064052

Keywords

-

Funding

  1. National Science Foundation
  2. LIGO Laboratory
  3. National Science Foundation [PHY-0757058]
  4. Max-Planck-Gesellschaft

Ask authors/readers for more resources

The two binary black hole (BBH) coalescences detected by LIGO, GW150914, and GW151226, were relatively nearby sources, with a redshift of similar to 0.1. As the sensitivity of Advanced LIGO and Virgo increases in the next few years, they will eventually detect stellar-mass BBHs up to redshifts of similar to 1. However, these are still relatively small distances compared with the size of the Universe, or with those encountered in most areas of astrophysics. In order to study BBH during the epoch of reionization, or black holes born from population III stars, more sensitive instruments are needed. Third-generation gravitational-wave detectors, such as the Einstein Telescope or the Cosmic Explorer, are already in an advanced R& D stage. These detectors will be roughly a factor of 10 more sensitive in strain than the current generation, and they will be able to detect BBH mergers beyond a redshift of 20. In this paper we quantify the precision with which these new facilities will be able to estimate the parameters of stellar-mass, heavy, and intermediate-mass BBHs as a function of their redshifts and the number of detectors. We show that having only two detectors would result in relatively poor estimates of black hole intrinsic masses: a situation improved with three or four instruments. Larger improvements are visible for the sky localization, although it is not yet clear whether BBHs are luminous in the electromagnetic or neutrino band. The measurement of the spin parameters, on the other hand, does not improve significantly as more detectors are added to the network since redshift information is not required to measure spin.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available