4.7 Review

microRNA and thyroid hormone signaling in cardiac and skeletal muscle

Journal

CELL AND BIOSCIENCE
Volume 7, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/s13578-017-0141-y

Keywords

Thyroid hormone; miRNA; Heart; Skeletal muscle

Funding

  1. Ministry of Science and Technology of the People's Republic of China [2016YFA0500102, 2016YFC1304905]
  2. National Natural Science Foundation [31525012, 31500959, 31371189, 81570768, 81471016]
  3. Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences [SIBS2012004]
  4. CAS/SAFEA International Partnership Program for Creative Research Teams
  5. Xuhui Central Hospital (Shanghai, China)

Ask authors/readers for more resources

Thyroid hormone (TH) signaling plays critical roles in the differentiation, growth, metabolism, and physiological function of all organs or tissues, including heart and skeletal muscle. Due to the significant progress in our understanding of the molecular mechanisms that underlie TH action, it's widely accepted that TH signaling is regulated at multiple levels. A growing number of discoveries suggest that microRNAs (miRNAs) act as fine-tune regulators of gene expression and adds sophisticated regulatory tiers to signaling pathways. Recently, some pioneering studies in cardiac and skeletal muscle demonstrating the interplay between miRNAs and TH signaling suggest that miRNAs might mediate and/or modulate TH signaling. This review presents recent advances involving the crosstalk between miRNAs and TH signaling and current evidence showing the importance of miRNA in TH signaling with particular emphasis on the study of muscle-specific miRNAs (myomiRs) in cardiac and skeletal muscle. Although the research of the reciprocal regulation of miRNAs and TH signaling is only at the beginning stage, it has already contributed to our current understanding of both TH action and miRNA biology. We also encourage further investigations to address the relative contributions of miRNAs in TH signaling under physiological and pathological conditions and how a group of miRNAs are coordinated to integrate into the complex hierarchical regulatory network of TH.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available