4.6 Article

Role of Capping Agent in Wet Synthesis of Nanoparticles

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 121, Issue 17, Pages 3213-3219

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpca.7b02186

Keywords

-

Ask authors/readers for more resources

Aqueous-based synthesis is one of the most popular methods to prepare nanoparticles. In these procedures, surfactants are needed to regulate the growth and final particle size. While there are numerous evidence on the decisive role of surfactants, a quantitative description remains elusive. This study develops a theoretical model to correlate the surfactant activities to particle growth. In the model, the penetrability of ions within surfactant layer is used to combine surface reaction and adsorption/desorption processes. The penetrability was then directly correlated to surfactant size. The theory was verified by synthesis of iron oxide nanoparticles with series of cationic surfactants. Eight surfactants, with same headgroup and increasing hydrocarbon tail, were employed. The experimental data showed a deterministic correlation between surfactant tails and particle size. The experimental correlation between surfactant length and particle size was predicted by the model. The modeling results verify the role of surfactant as capping agent during particle growth. More importantly, it provides a theoretical framework to control particle size in wet synthesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available