4.8 Review

Theory and Calculation of the Phosphorescence Phenomenon

Journal

CHEMICAL REVIEWS
Volume 117, Issue 9, Pages 6500-6537

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemrev.7b00060

Keywords

-

Funding

  1. Ministry of Education and Science of Ukraine [0115U000637]
  2. Chinese Academy of Science
  3. Swedish Science Research Council [201211191404-1]

Ask authors/readers for more resources

Phosphorescence is a phenomenon of delayed luminescence that corresponds to the radiative decay of the molecular triplet state. As a general property of molecules, phosphorescence represents a cornerstone problem of chemical physics due to the spin prohibition of the underlying triplet-singlet emission and because its analysis embraces a deep knowledge of electronic molecular structure. Phosphorescence is the simplest physical process which provides an example of spin-forbidden transformation with a characteristic spin selectivity and magnetic field dependence, being the model also for more complicated chemical reactions and for spin catalysis applications. The bridging of the spin prohibition in phosphorescence is commonly analyzed by perturbation theory, which considers the intensity borrowing from spin-allowed electronic transitions. In this review, we highlight the basic theoretical principles and computational aspects for the estimation of various phosphorescence parameters, like intensity, radiative rate constant, lifetime, polarization, zero-field splitting, and spin sublevel population. Qualitative aspects of the phosphorescence phenomenon are discussed in terms of concepts like structure-activity relationships, donor-acceptor interactions, vibronic activity, and the role of spin-orbit coupling under charge-transfer perturbations. We illustrate the theory and principles of computational phosphorescence by highlighting studies of classical examples like molecular nitrogen and oxygen, benzene, naphthalene and their azaderivatives, porphyrins, as well as by reviewing current research on systems like electrophosphorescent transition metal complexes, nucleobases, and amino acids. We furthermore discuss modern studies of phosphorescence that cover topics of applied relevance, like the design of novel photofunctional materials for organic light-emitting diodes (OLEDs), photovoltaic cells, chemical sensors, and bioimaging.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available