4.8 Article

Superior Stable and Long Life Sodium Metal Anodes Achieved by Atomic Layer Deposition

Journal

ADVANCED MATERIALS
Volume 29, Issue 18, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201606663

Keywords

-

Funding

  1. Natural Science and Engineering Research Council of Canada (NSERC)
  2. Canada Research Chair Program (CRC)
  3. Canada Foundation for Innovation (CFI)
  4. University of Western Ontario (UWO)

Ask authors/readers for more resources

Na-metal batteries are considered as the promising alternative candidate for Li-ion battery beneficial from the wide availability and low cost of sodium, high theoretical specific capacity, and high energy density based on the plating/stripping processes and lowest electrochemical potential. For Na-metal batteries, the crucial problem on metallic Na is one of the biggest challenges. Mossy or dendritic growth of Na occurs in the repetitive Na stripping/plating process with an unstable solid electrolyte interphase layer of nonuniform ionic flux, which can not only lead to the low Coulombic efficiency, but also can create short circuit risks, resulting in possible burning or explosion. In this communication, the atomic layer deposition of Al2O3 coating is first demonstrated for the protection of metallic Na anode for Na-metal batteries. By protecting Na foil with ultrathin Al2O3 layer, the dendrites and mossy Na formation have been effectively suppressed and lifetime has been significantly improved. Furthermore, the thickness of protective layer has been further optimized with 25 cycles of Al2O3 layer presenting the best performance over 500 cycles. The novel design of atomic layer deposition protected metal Na anode may bring in new opportunities to the realization of the next-generation high energy-density Na metal batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available