4.8 Article

Development of 3D Urchin-Shaped Coaxial Manganese Dioxide@Polyaniline (MnO2@PANI) Composite and Self-Assembled 3D Pillared Graphene Foam for Asymmetric All-Solid-State Flexible Supercapacitor Application

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 9, Issue 18, Pages 15350-15363

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b16406

Keywords

MnO2; PANI; urchin; graphene foam; asymmetric solid-state flexible supercapacitor

Funding

  1. Nanyang Technological University, Singapore

Ask authors/readers for more resources

We have fabricated high-energy-density all-solid-state flexible asymmetric supercapacitor by using a facile novel 3D hollow urchin-shaped coaxial manganese dioxide@polyaniline (MnO2,@PANI) composite as positive electrode and 3D graphene foam (GE) as negative electrode materials with polyvinyl alcohol (PVA)/KOH gel electrolyte. The coaxial MnO2@ PANI composite was fabricated by hydrothermal route followed by oxidation without use of an external oxidant. The formation mechanism of the 3D hollow MnO2@PANI composite occurs first by nucleation and growth of the MnO2 crystal species via dissolution-recrystallization and oriented attachment mechanisms followed by the oxidation of aniline monomers on the MnO2 crystalline template. The self-assembled 3D graphene block was synthesized by hydrothermal route using vitamin C as a reducing agent. The microstructures of the composites are analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The morphology is characterized by field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM), which clearly showed the formation of urchin-shaped coaxial MnO2@PANI composite. The electrochemical studies are explored by cyclic voltammetry, electrochemical impedance spectrometry, and cyclic charge discharge tests. The symmetric all-solid-state flexible MnO2@PANI//MnO2@PANI and GF//GF supercapacitors exhibit the specific capacitance of 129.2 and 82.1 F g(-1) at 0.5 A/g current density, respectively. The solid-state asymmetric supercapacitor shows higher energy density (37 Wh kg(-1)) with respect to the solid-state symmetric supercapacitors MnO2@ PANI//MnO2@PANI and GF//GF, where the obtained energy density are found to be 17.9 and 11.4 Wh kg(-1), respectively, at 0.5 A/g current density. Surprisingly, the asymmetric supercapacitor shows a high energy density of 22.3 Wh kg(-1) at a high current density of 5 A g(-1). The solid-state asymmetric supercapacitor shows a good cyclic stability in which,similar to 1.1% capacitance loss was observed after 5000 cycles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available