4.6 Review

Development of Polar Order by Liquid-Crystal Self-Assembly of Weakly Bent Molecules

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 23, Issue 23, Pages 5541-5556

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201606035

Keywords

azo compounds; ferroelectricity; fluorine; liquid crystals; mirror-symmetry breaking

Funding

  1. DFG [Ts 39/24-1]
  2. Alexander von Humboldt Foundation

Ask authors/readers for more resources

Organic ferroelectrics are of growing importance for multifunctional materials. Here we provide an understanding of the distinct stages of the development of sterically induced polar order in liquid-crystalline (LC) soft matter. Three series of weakly bent molecules derived from 4-cyanoresorcinol as the bent core unit with laterally fluorinated azobenzene wings have been synthesized, and the effects of the position of fluorine substitution, alkyl-chain length, and temperature on the LC self-assembly and polar order were studied. In the LC phases a paraelectric-ferroelectric transition took place as the size of the polar domains gradually increased, thereby crossing a permittivity maximum, similar to inorganic solid-state ferroelectrics. An increase in polar coherence length simultaneously led to a transition from synpolar to antipolar domain correlation in the high-permittivity paraelectric range. Associated with the emergence of polar order was the development of a tilted organization of the molecules and a growing coherence of tilt. This led to a transition from non-tilted via tilt-randomized uniaxial to long-range-tilted biaxial smectic phases, and to surface-stabilized symmetry breaking with the formation of chiral conglomerates and field-induced tilt. Moreover, there is a remarkably strong effect of the position of fluorination; polar order is favored by peripheral core substitution and is suppressed by inside-directed fluorination.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available