4.6 Article

Origin of layer dependence in band structures of two-dimensional materials

Journal

PHYSICAL REVIEW B
Volume 95, Issue 16, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.95.165125

Keywords

-

Ask authors/readers for more resources

We study the origin of layer dependence in band structures of two-dimensional (2D) materials. We find that the layer dependence, at the density functional theory (DFT) level, is a result of quantum confinement and the nonlinearity of the exchange-correlation functional. We use this to develop an efficient scheme for performing DFT and GW calculations of multilayer systems. We show that the DFT and quasiparticle band structures of a multilayer system can be derived from a single calculation on a monolayer of the material. We test this scheme on multilayers of MoS2, graphene, and phosphorene. This new scheme yields results in excellent agreement with the standard methods at a fraction of the computation cost. This helps overcome the challenge of performing fully converged GW calculations on multilayers of 2D materials, particularly in the case of transition-metal dichalcogenides, which involve very stringent convergence parameters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available