3.8 Proceedings Paper

Modelling slope failure using a quasi-static MPM with a non-local strain softening approach

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.proeng.2017.01.015

Keywords

MPM; quasi-static; implicit; non-local; strain softening; slope stability

Ask authors/readers for more resources

The Material Point Method (MPM), which can be thought of as a mesh-free technique, has been shown to be very efficient in avoiding the mesh distortion problem in large deformation analyses. However, for the widely used explicit dynamic MPM formulation, the time step must inevitably be very small in order to guarantee convergence, especially in the case of quasi-static problems. In this paper, an incremental updated Lagrangian quasi-static MPM formulation is developed, which requires less computation effort by using much larger time steps. Issues pertaining to the implementation of the present MPM formulation are discussed. Strain softening, which may potentially lead to localisation phenomena, is also considered in the constitutive model. Scale effects and mesh size dependency in the solution are accounted for by applying a spatial averaging approach to the strains using a weighting function defined by an internal length scale characterising the non-local deformation. A progressive failure of a slope is simulated in order to demonstrate the efficiency and good performance of the proposed formulation. (C) 2017 The Authors. Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available