4.5 Article

Influential factors affecting black carbon trends at four sites of differing distance from a major highway in Las Vegas

Journal

AIR QUALITY ATMOSPHERE AND HEALTH
Volume 11, Issue 2, Pages 181-196

Publisher

SPRINGER INTERNATIONAL PUBLISHING AG
DOI: 10.1007/s11869-017-0519-3

Keywords

Black carbon; PM2.5; Near-road; Air quality; Traffic

Funding

  1. US Environmental Protection Agency, through Office of Research and Development [EP-D-12-044]

Ask authors/readers for more resources

Elevated air pollution levels adjacent to major highways are an ongoing topic of public health concern worldwide. Black carbon (BC), a component of particulate matter (PM) emitted by diesel and gasoline vehicles, was measured continuously via a filter-based light absorption technique over similar to 16 months at four different stations positioned on a perpendicular trajectory to a major highway in Las Vegas, NV. During downwind conditions (winds from the west), BC at 20 m from the highway was 32 and 60% higher than concentrations at 100 and 300 m from the roadway, respectively. Overall highest roadside (20-m site) BC concentrations were observed during the time period of 4 a.m.-8 a.m. under low-speed variable winds (3.02 mu g/m(3)) or downwind conditions (2.84 mu g/m(3)). The 20-m site BC concentrations under downwind conditions are 85% higher on weekday periods compared to weekends during the time period of 4 a.m.-8 a.m. Whereas total traffic volume was higher on weekdays versus weekends and differed by approximately 3% on weekdays versus weekends, similarly, the detected heavy-duty fraction was higher on weekdays versus weekends and differed by approximately 21% on weekdays versus weekend. Low wind speeds predominated during early morning hours, leading to higher BC concentrations during early morning hours despite the maximum traffic volume occurring later in the day. No noticeable impact from the airport or nearby arterial roadways was observed, with the 300-m site remaining the lowest of the four-site network when winds were from the east. Multivariate linear regression analysis revealed that heavy-duty traffic volume, light-duty traffic volume, wind speed, weekday versus weekend, surface friction velocity, ambient temperature, and the background BC concentration were significant predictors of roadside BC concentrations. Comparison of BC and PM2.5 downwind concentration gradients indicates that the BC component contributes substantially to the PM2.5 increase in roadside environments. These results suggest that BC is an important indicator to assess the contribution of primary traffic emissions to near-road PM2.5 concentrations, providing opportunities to evaluate the feasibility and effectiveness of mitigation strategies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available