4.7 Review

Novel immune check point inhibiting antibodies in cancer therapy-Opportunities and challenges

Journal

DRUG RESISTANCE UPDATES
Volume 30, Issue -, Pages 39-47

Publisher

CHURCHILL LIVINGSTONE
DOI: 10.1016/j.drup.2017.02.001

Keywords

Immune checkpoint inhibitors; Therapeutic monoclonal antibodies; CTLA4; PD-1-PDL-1 axis; Immune-related adverse events

Ask authors/readers for more resources

Drug resistance of tumor cells to chemotherapy is limiting the therapeutic efficacy of most anticancer drugs and represents a major obstacle in medical oncology. However, treatment of various human malignancies with biologics, mostly monoclonal antibodies (mAbs), is not limited by such chemoresistance mechanisms. However, other resistance or evasion mechanisms limit the efficacy to anticancer therapeutic mAbs that engage tumor-associated antigens on the surface of the malignant cells. Immune checkpoint blocking monoclonal antibodies are heralded as a promising therapeutic approach in clinical oncology. These mAbs do not directly attack the malignant cells as most anticancer mAbs; rather, they enhance the anti-tumor response of the immune system by targeting immune regulatory pathways. Three mAbs targeting immune checkpoint molecules are currently used in the clinic and new mAbs that target other potential inhibitory targets are being actively investigated. This therapeutic approach, while proving as highly beneficial for many patients, is prone to toxicities and side effects of an autoimmune nature. Defining suitable management algorithms and biomarkers that predict therapeutic effects and adverse toxicity are required to provide survival benefit for larger numbers of cancer patients. Overcoming these challenges, along with opportunities for new agents and combinatorial strategies are the main focus of immune checkpoint blockade research today. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available