4.5 Article

Detection of ESR1 mutations in plasma and tumors from metastatic breast cancer patients using next-generation sequencing

Journal

BREAST CANCER RESEARCH AND TREATMENT
Volume 163, Issue 2, Pages 231-240

Publisher

SPRINGER
DOI: 10.1007/s10549-017-4190-z

Keywords

Circulating tumor DNA; ESR1 mutation; Resistance to endocrine therapy; Whole exon sequencing

Categories

Ask authors/readers for more resources

Liquid biopsy using digital PCR (dPCR) has been widely used for the screening of ESR1 mutations, since they are frequently identified in the hotspot. However, dPCR is limited to the known mutations. Therefore, we aimed to analyze the utility of next-generation sequencing (NGS) to discover novel ESR1 mutations. Whole exon sequencing of the ESR1 gene using NGS was performed in 16 primary and 47 recurrent tumor samples and 38 plasma samples from hormone receptor-positive metastatic breast cancer patients. Functional analyses were then performed for the novel mutations we detected. We identified no mutations in primary tumors and six mutations in five recurrent tumors, including three types of known mutations (Y537C, Y537N, and D538G) and two novel mutations (E279V and G557R). We also identified seven mutations in five plasma samples, including three types of known mutations (S463P, Y537S, and D538G) and one mutation not reported in COSMIC database (L536H). All nine patients with ESR1 mutations were treated with aromatase inhibitors (AIs) prior to sampling, and the mutations were frequently detected in patients who received AI treatments in the metastatic setting. Among the three novel mutations (E279V, L536H, and G557R), L536H, but not E279V and G557R, showed ligand-independent activity. All three mutant proteins showed nuclear localization and had no relation with non-genomic ER pathways. Although the molecular mechanisms of the E279V and G557R mutations remain unclear, our data suggest the utility of NGS as a liquid biopsy for metastatic breast cancer patients and the potential to identify novel ESR1 mutations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available