4.6 Article Proceedings Paper

Modelling Chemical Reasoning to Predict and Invent Reactions

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 23, Issue 25, Pages 6118-6128

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201604556

Keywords

artificial intelligence; augmented scientific discovery; computational chemistry; graph theory; organic chemistry

Funding

  1. Deutsche Forschungsgemeinschaft [SFB 858]

Ask authors/readers for more resources

The ability to reason beyond established knowledge allows organic chemists to solve synthetic problems and invent novel transformations. Herein, we propose a model that mimics chemical reasoning, and formalises reaction prediction as finding missing links in a knowledge graph. We have constructed a knowledge graph containing 14.4 million molecules and 8.2 million binary reactions, which represents the bulk of all chemical reactions ever published in the scientific literature. Our model outperforms a rule-based expert system in the reaction prediction task for 180000 randomly selected binary reactions. The data-driven model generalises even beyond known reaction types, and is thus capable of effectively (re-)discovering novel transformations (even including transition metal-catalysed reactions). Our model enables computers to infer hypotheses about reactivity and reactions by only considering the intrinsic local structure of the graph and because each single reaction prediction is typically achieved in a sub-second time frame, the model can be used as a high-throughput generator of reaction hypotheses for reaction discovery.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available