4.8 Article

High-Energy-Density Dielectric Polymer Nanocomposites with Trilayered Architecture

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 27, Issue 20, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201606292

Keywords

-

Funding

  1. U.S. Office of Naval Research
  2. China Scholar Council
  3. National Natural Science Foundation of China [51072151, 51673154]
  4. National Basic Research Program of China [2015CB654603]

Ask authors/readers for more resources

The development of advanced dielectric materials with high electric energy densities is of crucial importance in modern electronics and electric power systems. Here, a new class of multilayer-structured polymer nanocomposites with high energy and power densities is presented. The outer layers of the trilayered structure are composed of boron nitride nanosheets dispersed in poly(vinylidene fluoride) (PVDF) matrix to provide high breakdown strength, while PVDF with barium strontium titanate nanowires forms the central layer to offer high dielectric constant of the resulting composites. The influence of the filler contents on the electrical polarization, breakdown strength, and energy density is examined. Simulations are carried out to model the electrical tree formation in the layered nanocomposites and to verify the experimental breakdown results. The trilayered polymer nanocomposite with an optimized filler content displays a discharged energy density of 20.5 J cm(-3) at Weibull breakdown strength of 588 MV m(-1), which is among the highest discharged energy densities reported so far. Moreover, the nanocomposite exhibits a superior power density of 0.91 MW cm(-3), more than nine times that of the commercially available biaxially oriented polypropylene. The findings of this research provide a new design paradigm for high-performance dielectric polymer nanocomposites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available