4.6 Article

Defect-free atomic array formation using the Hungarian matching algorithm

Journal

PHYSICAL REVIEW A
Volume 95, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.95.053424

Keywords

-

Funding

  1. Samsung Science and Technology Foundation [SSTF-BA1301-12]
  2. Ministry of Science & ICT (MSIT), Republic of Korea [N11170133] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Deterministic loading of single atoms onto arbitrary two-dimensional lattice points has recently been demonstrated, where by dynamically controlling the optical-dipole potential, atoms from a probabilistically loaded lattice were relocated to target lattice points to form a zero-entropy atomic lattice. In this atom rearrangement, how to pair atoms with the target sites is a combinatorial optimization problem: brute-force methods search all possible combinations so the process is slow, while heuristic methods are time efficient but optimal solutions are not guaranteed. Here, we use the Hungarian matching algorithm as a fast and rigorous alternative to this problem of defect-free atomic lattice formation. Our approach utilizes an optimization cost function that restricts collision-free guiding paths so that atom loss due to collision is minimized during rearrangement. Experiments were performed with cold rubidium atoms that were trapped and guided with holographically controlled optical-dipole traps. The result of atom relocation from a partially filled 7 x 7 lattice to a 3 x 3 target lattice strongly agrees with the theoretical analysis: using the Hungarian algorithm minimizes the collisional and trespassing paths and results in improved performance, with over 50% higher success probability than the heuristic shortest-move method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available