4.7 Article

Differential spectral quantitative electroencephalography patterns between control and Parkinson's disease cohorts

Journal

EUROPEAN JOURNAL OF NEUROLOGY
Volume 23, Issue 2, Pages 387-392

Publisher

WILEY
DOI: 10.1111/ene.12878

Keywords

biomarker; dementia; EEG; Parkinson's disease; pathology; synucleinopathy

Funding

  1. Michael J. Fox Foundation for Parkinson's Disease Research

Ask authors/readers for more resources

Background and purposeIt is believed that progressive Lewy-type synucleinopathy (LTS) is primarily responsible for the worsening of motor and non-motor Parkinson's disease (PD) signs and symptoms. Characterization of quantitative electroencephalography (QEEG) abnormalities across the spectrum of LTS to PD dementia (PD-D) may provide insight into the pathophysiology of PD cortical dysfunction. Here our enlarged EEG database was leveraged to characterize spectral QEEG abnormalities in asymptomatic autopsy-defined groups of control participants and incidental Lewy body disease (ILBD) and three clinically defined groups of participants with PD (cognitively normal PD, mild cognitive impairment PD, and PD-D). MethodsThe PD cohort was studied as part of the Arizona Study of Aging and Neurodegenerative Disorders (AZSAND). AZSAND utilizes its Brain and Body Donation Program to perform prospective, standardized, regular longitudinal pre-mortem assessments until death. Resting EEG from subjects was analyzed for spectral domain QEEG measures of background rhythm frequency and global relative power in delta, theta, alpha and beta bands. ResultsThe various spectral QEEG measures showed differential changes specific to the groups compared. Important findings were background rhythm frequency showing the most pairwise differences across the groups, and this also was the only significant difference between control and ILBD. An increase in delta bandpower was characteristic of worsening cognitive deficits. ConclusionsDifferent patterns of change amongst QEEG measures across LTS and PD cognitive states suggest that they correlate with heterogeneous pathophysiologies of cortical dysfunction within the PD clinical spectrum. In addition, the biomarker application of a specific spectral QEEG measure needs to be selectively suited to its study purpose.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available