4.7 Article

Plant factories; crop transpiration and energy balance

Journal

AGRICULTURAL SYSTEMS
Volume 153, Issue -, Pages 138-147

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.agsy.2017.01.003

Keywords

Artificial lighting; Dehumidification; Lettuce; Penman-Monteith; Urban agriculture; Vertical farm

Funding

  1. EU-H project Ground Demonstration of Plant Cultivation Technologies and Operation in Space for Safe Food Production on-board ISS and Future Human Space Exploration Vehicles and Planetary Outposts (EDEN-ISS) [636501]

Ask authors/readers for more resources

Population growth and rapid urbanisation may result in a shortage of food supplies for cities in the foreseeable future. Research on closed plant production systems, such as plant factories, has attempted to offer perspectives for robust (urban) agricultural systems. Insight into the explicit role of plant processes in the total energy balance of these production systems is required to determine their potential. We describe a crop transpiration model that is able to determine the relation between sensible and latent heat exchange, as well as the corresponding vapour flux for the production of lettuce in closed systems. Subsequently, this model is validated for the effect of photosynthetic photon flux, cultivation area cover and air humidity on lettuce transpiration, using literature research and experiments. Results demonstrate that the transpiration rate was accurately simulated for the aforementioned effects. Thereafter we quantify and discuss the energy productivity of a standardised plant factory and illustrate the importance of transpiration as a design parameter for climatisation. Our model can provide a greater insight into the energetic expenditure and performance of closed systems. Consequently, it can provide a starting point for determining the viability and optimisation of plant factories. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available