4.7 Article

Determining pomegranate water and nitrogen requirements with drip irrigation

Journal

AGRICULTURAL WATER MANAGEMENT
Volume 187, Issue -, Pages 11-23

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.agwat.2017.03.007

Keywords

Subsurface drip irrigation; High frequency drip irrigation; Soil matric potential; Deep percolation

Funding

  1. CDFA/FREP Fertilizer Research and Education Program

Ask authors/readers for more resources

Despite being an ancient crop there is limited knowledge on the water and nitrogen (N) requirements of pomegranate. We conducted research at the University of California, Kearney Agricultural Research and Extension Center (KARE) to determine the water and N requirements of a developing pomegranate orchard. Pomegranate trees (Punica granatum L. var. Wonderful) were planted in 2010. The irrigation treatments were surface drip irrigation (DI) and subsurface drip irrigation (SDI) with three N sub treatments (N application rates of 50, 100, and 150% of current practice) and 5 replications in split-plot design. A weighing lysimeter located in the experimental field was used to automatically irrigate the orchard after 1.0 mm of measured crop water use. The trees received uniform application of fertilizers and water during the first two years of growth to insure uniform stand establishment prior to beginning the experiment. The pH of the irrigation water was maintained at 6.5 +/- 0.5 by injection of N as urea sulfuric acid (US-10; 10% N). Differential N treatments were started in 2012 and continued through the end of the project. Phosphorus (PO4-P) was continuously injected during irrigation and potassium (K2T) was injected weekly. We report the results of the study from 2013 to 2015. From 2013 to 2015 the applied N ranged from 62 to 332 kg/ha and the total yields ranged from 33,144 to 57,7691 kg/ha. There were no statistical differences in yield within any year related to total applied N. The yearly applied irrigation water increased as the plant size increased. The total water requirement is approximately 952 mm and the maximum daily water use was 10.5 mm. The DI irrigation application went from 645 mm to 932 mm and the SDI application increased from 584 mm to 843 mm from 2013 to 2015. A fifth order polynomial was fitted to the crop coefficient using the 2015 data. The use of SDI resulted in lower weed pressure in the SDI plots than in the DI irrigated plots in all three years. High frequency irrigation resulted in nitrate being managed within the soil profile to a depth of 1.5 m by minimizing deep percolation losses to the groundwater. While the yields were higher in the SDI than the DI system they were not statistically different. Although there were some differences in N content in tree leaves and fruit peels, there were no differences in fruit arils among N rates. The N requirement is in the range of 62-112 kg/ha (109-198 g/tree) for a mature pomegranate orchard and will ultimately depend on the planting density. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available