3.8 Proceedings Paper

Underwater Superhydrophobiciy: Fundamentals and Applications

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.piutam.2017.03.018

Keywords

Wetting Stability; Drag Reduction; Superhydrophobic Surfaces; Wetting Transition

Ask authors/readers for more resources

Bioinspired superhydrophobic surfaces have attracted great interests from fundamental researches to engineering applications. The functionality of superhydrophobicity, especially for an underwater situation, depends on a large area fraction of entrapped liquid-gas interfaces, which, however, are subject to instabilities induced by various physical phenomena, such as pressurization, air diffusion, fluid flow, and condensation. The wetting states strongly affssect the functionality of superhydrophobic surface, like liquid slippage and cavitation. The current work is dedicated to elucidating the underlying mechanisms of stability and wetting transition of underwater superhydrophobicity, providing novel strategies for durable and robust design, and introducing the applications in drag reduction and cavitation control. (C) 2017 The Authors. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available