4.7 Article

Exploring new selective 3-benzylquinoxaline-based MAO-A inhibitors: Design, synthesis, biological evaluation and docking studies

Journal

EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY
Volume 93, Issue -, Pages 308-320

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ejmech.2015.02.020

Keywords

Quinoxalin-2(1H)-one; N-Aroylhydrazine; N '-Acetylaroylhydrazine; Schiff's base; Amino acids; Monoamine oxidase

Ask authors/readers for more resources

In this investigation, we searched for novel MAO-A inhibitors using a 3-benzylquinoxaline scaffold based on our earlier findings. Series of N'-(3-benzylquinoxalin-2-yl)acetohydrazide, 4a, N'-(3-benzylquinoxalin-2-yl)benzohydrazide derivatives 4b-f, N'-[2-(3-benzyl-2-oxoquinoxalin-1(2H)-yl) acetyl]benzohydrazide derivatives 7a-d, (9H-fluoren-9-yl)methyl 1-[2-(2-(3-benzyl-2-oxoquinoxalin-1(2H)-yl)acetyl)-hydrazinyl]-2-ylcarbamate derivatives 8a-c, 2-(3-benzy1-2-oxoquinoxalin-1(2H)-yl)-N'-benzylidene acetohydrazide derivatives 9a-h, and ethyl 2-(3-benzyl-2-oxoquinoxalin-1(2H)-yl)acetate derivatives 10a-e were synthesized and evaluated in vitro as inhibitors of the two monoamine oxidase isoforms, MAO-A and MAO-B. Most of the compounds showed a selective MAO-A inhibitory activity in the nanomolar or low micromolar range. Compounds 4e and 9g were the most potent derivatives with high MAO-A selectivity and their molecular docking studies were performed in order to rationalize the obtained biological result. (C) 2015 Elsevier Masson SAS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available