4.5 Article

An artificial intelligence approach to predict gross heating value of lignocellulosic fuels

Journal

JOURNAL OF THE ENERGY INSTITUTE
Volume 90, Issue 3, Pages 397-407

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.joei.2016.04.003

Keywords

Biomass; Gross heating value; Artificial neural network; Proximate analysis

Categories

Ask authors/readers for more resources

The gross heating value (GHV) is one of the most significant properties of biomass fuels in designing and operating any fuel processing systems. This study deals with a new method to calculate the GHV from the proximate analysis of different kinds of lignocellulosic fuels by using Levenberg-Marquardt trained artificial neural network (ANN) as an artificial intelligence method. Furthermore, a new nonlinear regression model was developed for this study. The published correlations were employed with the various biomasses to obtain a comparison with the ANN model and developed nonlinear correlation in this study. The results indicate that the artificial intelligence approach offers a high degree of correlation and its robustness and capability to compute GHV of any lignocellulosic fuels from its proximate analysis. Therefore, the proposed artificial intelligence is highly promising tool to use in designing and operating of any thermolysis process for lignocellulosic fuels. (C) 2016 Energy Institute. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available