4.7 Article

Novel imidazole derivatives as heme oxygenase-1 (HO-1) and heme oxygenase-2 (HO-2) inhibitors and their cytotoxic activity in human-derived cancer cell lines

Journal

EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY
Volume 96, Issue -, Pages 162-172

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ejmech.2015.04.003

Keywords

Heme oxygenase; HO-1; HO-2; Inhibitors; Anti-proliferative properties; Anti-cancer

Funding

  1. Italian MIUR
  2. University of Catania

Ask authors/readers for more resources

Heme oxygenase (HO) is a cytoprotective enzyme that can be overexpressed in some pathological conditions, including certain cancers. In this work, novel imidazole derivatives were designed and synthesized as inhibitors of heme oxygenase-1 (HO-1) and heme oxygenase-2 (HO-2). In these compounds the imidazole ring, crucial for the activity, is connected to a hydrophobic group, represented by aryloxy, benzothiazole, or benzoxazole moieties, by means of alkyl or thioalkyl chains of different length. Many of the tested compounds were potent and/or selective against one of the two isoforms of HO. Furthermore, most of the pentyl derivatives showed to be better inhibitors of HO-2 with respect to HO-1, revealing a critical role of the alkyl chain in discriminating between the two isoenzymes. Compounds which showed the better profile of HO inhibition were selected and tested to evaluate their cytotoxic properties in prostate and breast cancer cell lines (DU-145, PC3, LnCap, MDA-MB-231, and MCF-7). In these assays, aryloxyalkyl derivatives resulted more cytotoxic than benzothiazolethioalkyl ones; in particular compound 31 was active against all the cell lines tested, confirming the anti-proliferative properties of HO inhibitors and their potential use in the treatment of specific cancers. (C) 2015 Elsevier Masson SAS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available