4.7 Article

Phosphorylation Dynamics Dominate the Regulated Proteome during Early Xenopus Development

Journal

SCIENTIFIC REPORTS
Volume 7, Issue -, Pages -

Publisher

NATURE RESEARCH
DOI: 10.1038/s41598-017-15936-y

Keywords

-

Funding

  1. National Institute of Health [R01GM096767, R01HD084399, P41GM108538]
  2. National Science Foundation Graduate Research Fellowship

Ask authors/readers for more resources

The earliest stages of animal development are largely controlled by changes in protein phosphorylation mediated by signaling pathways and cyclin-dependent kinases. In order to decipher these complex networks and to discover new aspects of regulation by this post-translational modification, we undertook an analysis of the X. laevis phosphoproteome at seven developmental stages beginning with stage VI oocytes and ending with two-cell embryos. Concurrent measurement of the proteome and phosphoproteome enabled measurement of phosphosite occupancy as a function of developmental stage. We observed little change in protein expression levels during this period. We detected the expected phosphorylation of MAP kinases, translational regulatory proteins, and subunits of APC/C that validate the accuracy of our measurements. We find that more than half the identified proteins possess multiple sites of phosphorylation that are often clustered, where kinases work together in a hierarchical manner to create stretches of phosphorylated residues, which may be a means to amplify signals or stabilize a particular protein conformation. Conversely, other proteins have opposing sites of phosphorylation that seemingly reflect distinct changes in activity during this developmental timeline.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available