4.7 Article

Character-based DNA barcoding for authentication and conservation of IUCN Red listed threatened species of genus Decalepis (Apocynaceae)

Journal

SCIENTIFIC REPORTS
Volume 7, Issue -, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-017-14887-8

Keywords

-

Funding

  1. Council of Scientific and Industrial Research (CSIR), New Delhi, India through XIIth FYP project Biopros-PR [BSC-0106]
  2. Council of Scientific and Industrial Research (CSIR), New Delhi, India through ChemBio [BSC-0203]

Ask authors/readers for more resources

The steno-endemic species of genus Decalepis are highly threatened by destructive wild harvesting. The medicinally important fleshy tuberous roots of Decalepis hamiltonii are traded as substitute, to meet the international market demand of Hemidesmus indicus. In addition, the tuberous roots of all three species of Decalepis possess similar exudates and texture, which challenges the ability of conventional techniques alone to perform accurate species authentication. This study was undertaken to generate DNA barcodes that could be utilized in monitoring and curtailing the illegal trade of these endangered species. The DNA barcode reference library was developed in BOLD database platform for candidate barcodes rbcL, matK, psbA-trnH, ITS and ITS2. The average intra-specific variations (0-0.27%) were less than the distance to nearest neighbour (0.4-11.67%) with matK and ITS. Anchoring the coding region rbcL in multigene tiered approach, the combination rbcL + matK + ITS yielded 100% species resolution, using the least number of loci combinations either with PAUP or BLOG methods to support a character-based approach. Species-specific SNP position (230 bp) in the matK region that is characteristic of D. hamiltonii could be used to design specific assays, enhancing its applicability for direct use in CITES enforcement for distinguishing it from H. indicus.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available