4.7 Article

White Matter Repair After Extracellular Vesicles Administration in an Experimental Animal Model of Subcortical Stroke

Journal

SCIENTIFIC REPORTS
Volume 7, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/srep44433

Keywords

-

Funding

  1. INVICTUS (Spanish Neurovascular Network) [RD12/0014]
  2. Miguel Servet [CP15/00069]
  3. Sara Borrell postdoctoral fellowship from Research Institute Carlos III [CD12/00706]
  4. Ministry of Science and Innovation of Spain
  5. European Regional Development Fund
  6. [PS15/01318]

Ask authors/readers for more resources

Mesenchymal stem cells have previously been shown to mediate brain repair after stroke; they secrete 50-100 nm complexes called extracellular vesicles (EVs), which could be responsible for provoking neurovascular repair and functional recovery. EVs have been observed by electron microscopy and NanoSight, and they contain associated proteins such as CD81 and Alix. This purified, homogeneous population of EVs was administered intravenously after subcortical stroke in rats. To evaluate the EVs effects, we studied the biodistribution, proteomics analysis, functional evaluation, lesion size, fiber tract integrity, axonal sprouting and white matter repair markers. We found that a single administration of EVs improved functional recovery, fiber tract integrity, axonal sprouting and white matter repair markers in an experimental animal model of subcortical stroke. EVs were found in the animals' brain and peripheral organs after euthanasia. White matter integrity was in part restored by EVs administration mediated by molecular repair factors implicated in axonal sprouting, tract connectivity, remyelination and oligodendrogenesis. These findings are associated with improved functional recovery. This novel role for EVs presents a new perspective in the development of biologics for brain repair.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available