4.7 Article

Preparation of a p-n heterojunction BiFeO3@TiO2 photocatalyst with a core-shell structure for visible-light photocatalytic degradation

Journal

CHINESE JOURNAL OF CATALYSIS
Volume 38, Issue 6, Pages 1052-1062

Publisher

SCIENCE PRESS
DOI: 10.1016/S1872-2067(17)62845-6

Keywords

Bismuth ferrite; Titanium dioxide; Core-shell structure; Degradation; Photocatalysis; Visible light

Funding

  1. Australian Research Council [ARC DP150103026]
  2. National Natural Science Foundation of China [51278242]

Ask authors/readers for more resources

Magnetically separable bismuth ferrite (BiFeO3) nanoparticles were fabricated by a citrate self-combustion method and coated with titanium dioxide (TiO2) by hydrolysis of titanium butoxide (Ti(OBu)(4)) to form BiFeO3@TiO2 core-shell nanocomposites with different mass ratios of TiO2 to BiFeO3. The photocatalytic performance of the catalysts was comprehensively investigated via photocatalytic oxidation of methyl violet (MV) under both ultraviolet and visible-light irradiation. The BiFeO3@TiO2 samples exhibited better photocatalytic performance than either BiFeO3 or TiO2 alone, and a BiFeO3@TiO2 sample with a mass Patio of 1:1 and TiO2 shell thickness of 50-100 nm showed the highest photo-oxidation activity of the catalysts. The enhanced photocatalytic activity was ascribed to the formation of a p-n junction of BiFeO3 and TiO2 with high charge separation efficiency as well as strong light absorption ability. Photoelectrochemical Mott-Schottky (MS) measurements revealed that both the charge carrier transportation and donor density of BiFeO3 were markedly enhanced after introduction of TiO2. The mechanism of MV degradation is mainly attributed to hydroxyl radicals and photogenerated electrons based on energy band theory and the formation of an internal electrostatic field. In addition, the unique core-shell structure of BiFeO3@TiO2 also promotes charge transfer at the BiFeO3/TiO2 interface by increasing the contact area between BiFeO3 and TiO2. Finally, the photocatalytic activity of BiFeO3@TiO2 was further confirmed by degradation of other industrial dyes under visible-light irradiation. (C) 2017, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available