4.6 Article

Boosting the terahertz nonlinearity of graphene by orientation disorder

Journal

2D MATERIALS
Volume 4, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/2053-1583/aa5c64

Keywords

graphene; random stacking; terahertz nonlinearity; terahertz nonlinear absorption; ultrafast terahertz conductivity

Funding

  1. National Research Foundation (NRF) of Korea - Ministry of Science, ICT and Future Planning (MSIP) [2016R1A2A1A05005381, 2014R1A2A1A11049467]
  2. World Class Institute (WCI) program of the National Research Foundation (NRF) of Korea - MSIP [WCI 2011-001]
  3. Center for Advanced Meta-Materials (CAMM) - Korean government (MSIP) as a Global Frontier Project [CAMM-2014M3A6B3063709]
  4. Leverhulme Trust (UK) [RPG-2014-068]
  5. Engineering and Physical Sciences Research Council (UK)
  6. EPSRC [EP/L024926/1] Funding Source: UKRI
  7. Engineering and Physical Sciences Research Council [EP/L024926/1] Funding Source: researchfish

Ask authors/readers for more resources

The conical band structure is the cornerstone of graphene's ultra-broadband optical conductivity. For practical use of graphene in nonlinear photonics, however, substantial increases of the lightmatter interaction strength will be required while preserving the promising features of monolayers, as the interaction of light with a single atomic layer is limited due to the extremely short interaction length and low density of state, particularly for the long-wavelength region. Here, we report that this demand can be fulfilled by random stacking of high-quality large-area monolayer graphene up to a requested number of layers, which leads to the electronic interaction between layers being effectively switched off due to turbostratic disorder. The nonlinear characteristics of randomly stacked multilayer graphene (RSMG), which originates from a thermo-modulational feedback mechanism through ultrafast free-carrier heating and temperature-dependent carrier-phonon collisions, show clear improvements in the terahertz (THz) regime with increasing layer numbers, whereas as-grown multilayer graphene (AGMG) exhibits limited behaviors due to strong interlayer coupling. This controllable nonlinearity enhancement provides an ideal prerequisite for developing efficient graphene-based THz photonic devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available