4.7 Article

Identification of the N-terminal transmembrane domain of StarD7 and its importance for mitochondrial outer membrane localization and phosphatidylcholine transfer

Journal

SCIENTIFIC REPORTS
Volume 7, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-017-09205-1

Keywords

-

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology, Japanese Government [25870668, 17K08642, 15K08284]
  2. Grants-in-Aid for Scientific Research [17K08642, 25870668, 15K08284] Funding Source: KAKEN

Ask authors/readers for more resources

StarD7 facilitates phosphatidylcholine (PC) transfer to mitochondria, and is essential for mitochondrial homeostasis. However, the molecular mechanism for PC transfer by protein remains poorly understood. Herein, we describe a putative novel transmembrane (TM) domain C-terminal to the mitochondriatargeting signal (MTS) sequence at the N-terminus of StarD7. The mature form of StarD7 is integrated and/or associated onto the outer leaflet of the outer mitochondrial membrane (OMM) in HEPA-1 and HepG2 cells. A truncated form of StarD7 lacking the TM domain is distributed in the inner space of the mitochondria, and cannot reverse mitochondrial abnormalities, such as complex formation and PC content, when re-expressed in StarD7-KO HEPA-1 cells. Re-expression of wild StarD7 can compensate these mitochondrial functions of StarD7-KO HEPA-1 cells. The precursor form of StarD7 is cleaved between Met76 and Ala77, and Ala77 and Ala78 in the TM domain to produce the mature form. These results suggest that StarD7 is anchored onto the OMM through its N-terminal TM domain, and the C-terminal START domain may extend into the cytoplasm and shuttle PC between the ER and OMM at the ER-mitochondria contact sites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available