4.7 Article

Low-cost humic acid-bonded silica as an effective solid-phase extraction sorbent for convenient determination of aflatoxins in edible oils

Journal

ANALYTICA CHIMICA ACTA
Volume 970, Issue -, Pages 38-46

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.aca.2017.02.029

Keywords

Aflatoxins; Edible oil; Humic acid-bonded silica sorbent; Solid-phase extraction; Liquid chromatography mass spectrometry

Funding

  1. National Natural Science Foundation of China [21605027]

Ask authors/readers for more resources

Aflatoxins (AFs) are highly toxic, mutagenic, carcinogenic, and teratogenic secondary metabolites produced by the toxigenic fungi Aspergillus flavus and Aspergillus parasiticus. AFs tend to contaminate a wide range of foods which is a serious and recurring food safety problem worldwide. Currently, immunoaffinity chromatography (IAC) has become the most conventional sample clean-up method for determining AFs in foodstuffs. However, IAC method is limited in the large-scale food analysis because it requires the use of expensive disposable cartridges and the IA procedure is time-consuming. Herein, to achieve the cost-effective determination of AFs in edible oils, we developed a promising solid-phase extraction (SPE) method based on commercially available humic acid-bonded silica (HAS) sorbent, followed by high performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) analysis. In HAS-SPE, AFs can be captured by the HAS sorbent with both hydrophobic and hydrophilic interactions, whereas the oil matrix was captured only with the hydrophobic interactions. The oil matrix can be sufficiently washed off with isopropanol, while the AFs were still retained on the SPE packing, thus achieving selective extraction of AFs and clean-up of oil matrices. Under the optimal conditions of HAS-SPE, satisfactory recoveries ranging from 82% to 106% for four AFs (B-1, B-2, G(1), and G(2)) were achieved in various oil matrices, containing blended oil, tea oil, rapeseed oil, peanut oil, sunflower seed oil, corn oil, blended olive oil, rice oil, soybean oil, and sesame oil. Only minor matrix effects ranging from 99% to 105% for four AFs were observed. Moreover, the LODs of AFs between 0.012 and 0.035 mu g/kg completely meet the regulatory levels fixed by the EU, China or other countries. The methodology was further validated for assaying the naturally contaminated peanut oils, and consistent results between the HAS-SPE and the referenced IAC were obtained. In addition, HAS-SPE can directly treat diluted oil sample without liquid-liquid extraction and is automatable, thus making it simple and convenient for the largescale determination of AFs in edible oils. Using this method, we successfully detected four AFs in the naturally contaminated peanut oils, which is, to the best of our knowledge, the first report about the determination of AFs in edible oils using HA-based SPE. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available