4.8 Article

Enhanced catalytic degradation of methylene blue by α-Fe2O3/graphene oxide via heterogeneous photo-Fenton reactions

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 206, Issue -, Pages 642-652

Publisher

ELSEVIER
DOI: 10.1016/j.apcatb.2017.01.075

Keywords

Heterogeneous Fenton reaction; Dye wastewater; Hematite; Graphene oxide; Organic structures

Funding

  1. China's NSF [21377039]
  2. Shanghai international cooperation research projects [14230710900]

Ask authors/readers for more resources

Novel hybrid nanostructures or nanocomposites are receiving increasing attention due to their newly evolved properties. In this work, alpha-Fe2O3 anchored to graphene oxide (GO) nanosheet (alpha-Fe2O3@GO) was synthesized through a facile hydrolysis process and its photo-catalytic performances and dtlrability in heterogeneous Fenton system were fully evaluated. The decolorization rates of methylene blue in alpha-Fe2O3@GO + H2O2 + UV system within a wide pH range were approximately 2.9-fold that of classical Degussa P25 TiO2 +UV and 2.4-fold that of alpha-Fe2O3 + H2O2 + UV. This enhanced decolorization of methylene blue (MB) in alpha-Fe2O3@GO + H2O2 + UV system were attributed to the unique incorporation of GO into the catalyst which not only mediated the morphology of active sites alpha-Fe2O3 nanoparticles but also offered high electron conductivity and electrostatic attraction between negatively charged GO with positively charged MB. High efficiencies of degradation were achieved on various surface charged organic pollutants (around 96-100%), such as cationic compounds of MB and rhodamine B (RhB), anionic compound Orange II (OII) and Orange G (OG), neutral compounds of phenol, 2-nitrophenol (2 -NP) and endocrine disrupting compound 17 beta-estradiol (E2). The dominant reactive oxygen species (ROS) responsible for decolorization, such as hydroxyl radicals ((OH)-O-circle) and superoxide anion radicals (O-2(circle-)) generated by activation of H2O2 on the surface of alpha-Fe2O3@GO were detected and quantified by free radical quenching methods. The possible degradation mechanism of MB involved the rupture of phenothiazine ring by desulfurization and the rupture of phenyl ring due to the attack of ROS, which was analyzed by LC/MS/MS. The reduction of MB and its intermediates was consistent with the decreasing trend of the acute toxicity towards luminous bacteria with the increasing irradiation time. The results lay a foundation for highly effective and durable photo-Fenton technologies for organic wastewater within wider pH ranges than the conventional photo-Fenton reaction.(C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available