4.7 Article

Cu2O quantum dots modified by RGO nanosheets for ultrasensitive and selective NO2 gas detection

Journal

CERAMICS INTERNATIONAL
Volume 43, Issue 11, Pages 8372-8377

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2017.03.179

Keywords

Gas sensor; Thin film; Cuprous oxide quantum dots; Reduced graphene oxide; Nitrogen dioxide

Funding

  1. Fundamental Research Funds for the Central Universities [106112016CDJXY120006, 0210005202063]

Ask authors/readers for more resources

Real-time monitoring of trace NO2 emission has been an emerging challenge in environment and health sectors lately. Aiming to overcome this challenge, NO2 gas sensors based on cuprous oxide quantum dots (Cu2O QDs) anchored onto reduced graphene oxide (RGO) nanosheets serving as a sensitive layer were prepared in this report. Apart from a series of purposive measurements, various characterization techniques such as XRD, Raman, XPS and TEM were employed as well to assist the exploration of sensors performance to NO2 gas. The experimental results revealed a 580% response enhancement for prepared RGO/Cu2O sensors compared with pure RGO counterparts, as well as an excellent selectivity. In a specific experiment, the sensing response attained 4.8% and 29.3% toward 20 ppb and 100 ppb NO2 respectively at 60 degrees C, which was larger than most Cu2O based resistive gas sensors. Moreover, further subtle modulation of this RGO/Cu2O nanocomposites led to a preferable room-temperature response of 37.8% toward 100 ppb NO2, which also offered a favorable stability of 98.1% response retention after four exposures within ten days. The obtained results imply that the prepared RGO/Cu2O QDs sensors possess a competitive capability of trace NO2 detection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available