4.8 Article

A Solution Processable High-Performance Thermoelectric Copper Selenide Thin Film

Journal

ADVANCED MATERIALS
Volume 29, Issue 21, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201606662

Keywords

-

Funding

  1. National Science Foundation [EFRI-1433541, 1545659]
  2. Sustainable LA Grand Challenge
  3. Anthony and Jeanne Pritzker Family Foundation
  4. Direct For Education and Human Resources
  5. Division Of Graduate Education [1545659] Funding Source: National Science Foundation
  6. Directorate For Engineering
  7. Emerging Frontiers & Multidisciplinary Activities [1433541] Funding Source: National Science Foundation

Ask authors/readers for more resources

A solid-state thermoelectric device is attractive for diverse technological areas such as cooling, power generation and waste heat recovery with unique advantages of quiet operation, zero hazardous emissions, and long lifetime. With the rapid growth of flexible electronics and miniature sensors, the low-cost flexible thermoelectric energy harvester is highly desired as a potential power supply. Herein, a flexible thermoelectric copper selenide (Cu2Se) thin film, consisting of earth-abundant elements, is reported. The thin film is fabricated by a low-cost and scalable spin coating process using ink solution with a truly soluble precursor. The Cu2Se thin film exhibits a power factor of 0.62 mW/(m K-2) at 684 K on rigid Al2O3 substrate and 0.46 mW/(m K-2) at 664 K on flexible polyimide substrate, which is much higher than the values obtained from other solution processed Cu2Se thin films (<0.1 mW/(m K-2)) and among the highest values reported in all flexible thermoelectric films to date (approximate to 0.5 mW/(m K-2)). Additionally, the fabricated thin film shows great promise to be integrated with the flexible electronic devices, with negligible performance change after 1000 bending cycles. Together, the study demonstrates a low-cost and scalable pathway to high-performance flexible thin film thermoelectric devices from relatively earth-abundant elements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available