4.6 Article

Pebax-based composite membranes with high gas transport properties enhanced by ionic liquids for CO2 separation

Journal

RSC ADVANCES
Volume 7, Issue 11, Pages 6422-6431

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ra27221e

Keywords

-

Funding

  1. National Natural Science Fund for Distinguished Young Scholars [21425625]
  2. National Natural Science Foundation of China [21506219, 51574215, 21606233]
  3. State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology [oic-201601005]

Ask authors/readers for more resources

Membrane-based separation technology has been reported as one of the possible methods to efficiently and economically separate carbon dioxide (CO2). To provide synergistic enhancements in the gas separation performance, organic polymer (Pebax 1657), zeolite imidazolate framework-8 (ZIF-8) nanoparticles, and ionic liquid (IL) have been integrated to develop three-component composite membranes. To achieve high separation performance of three-component membranes, the effects of IL anions and ZIF-8 content on gas permeability and selectivity were investigated first. The ILs were 1-butyl- 3-methyl imidazolium ([Bmim]) cation based on different anions of bis(trifluoromethylsulfonyl) imide ([NTf2]), dicyanamide ([DCA]), and tetrafluoroborate ([BF4]). Gas transport properties of all the prepared membranes were investigated at 23 degrees C and 1 bar. The results showed that the anion of IL is a key factor to determine the CO2 permeability of the membranes, which is similar to the principle of CO2 solubility in pure ILs. In addition, ZIF-8 could increase both CO2 diffusivity and solubility coefficients of the Pebax/ZIF-8 membranes, resulting in a two-fold increase in the CO2 permeability. For the Pebax/ ZIF-8(15%)/[Bmim][NTf2] membranes, it has been revealed that [Bmim][NTf2] acts as a low molecular weight additive, leading to a more amorphous structure and a higher FFV (fractional free volume) of the membranes, which are beneficial for gas diffusion. The addition of IL can improve the compatibility between the inorganic particles and the polymer matrix; thus, the non-selective voids decrease, which leads to a higher CO2/N-2 selectivity. The CO2 permeability of the Pebax/ZIF-8(15%)/IL(80%) membrane was 4.3 times that of the pure Pebax membrane without sacrificing the CO2/N-2 selectivity. Therefore, the high gas transport properties of the Pebax/ZIF-8/IL membranes make them promising candidates for CO2-effective separation materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available