4.2 Article

SIRT1 ameliorates oxidative stress induced neural cell death and is down-regulated in Parkinson's disease

Journal

BMC NEUROSCIENCE
Volume 18, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/s12868-017-0364-1

Keywords

SIRT1; Oxidative stress; Cell survival; Alpha-synuclein; Parkinson's disease

Categories

Funding

  1. National Institute for Health Research Biomedical Research Unit in Lewy Body Disorders
  2. NIHR Biomedical Research Centre in ageing and Chronic Disease
  3. The Newcastle upon Tyne Hospitals NHS Foundation Trust
  4. Medical Research Council [G0502157, G0400074, G1100540, G0900652] Funding Source: researchfish
  5. MRC [G1100540, G0400074, G0502157, G0900652] Funding Source: UKRI

Ask authors/readers for more resources

Background: Sirtuins (SIRTs) are NAD(+) dependent lysine deacetylases which are conserved from bacteria to humans and have been associated with longevity and lifespan extension. SIRT1, the best studied mammalian SIRT is involved in many physiological and pathological processes and changes in SIRT1 have been implicated in neurodegenerative disorders, with SIRT1 having a suggested protective role in Parkinson's disease. In this study, we determined the effect of SIRT1 on cell survival and alpha-synuclein aggregate formation in SH-SY5Y cells following oxidative stress. Results: Over-expression of SIRT1 protected SH-SY5Y cells from toxin induced cell death and the protection conferred by SIRT1 was partially independent of its deacetylase activity, which was associated with the repression of NF-kappa B and cPARP expression. SIRT1 reduced the formation of alpha-synuclein aggregates but showed minimal co-localisation with alpha-synuclein. In post-mortem brain tissue obtained from patients with Parkinson's disease, Parkinson's disease with dementia, dementia with Lewy bodies and Alzheimer's disease, the activity of SIRT1 was observed to be down-regulated. Conclusions: These findings suggests a negative effect of oxidative stress in neurodegenerative disorders and possibly explain the reduced activity of SIRT1 in neurodegenerative disorders. Our study shows that SIRT1 is a pro-survival protein that is downregulated under cellular stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available