4.4 Article

Minimization of the Thiolactomycin Biosynthetic Pathway Reveals that the Cytochrome P450 Enzyme TlmF Is Required for Five-Membered Thiolactone Ring Formation

Journal

CHEMBIOCHEM
Volume 18, Issue 12, Pages 1072-1076

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cbic.201700090

Keywords

biosynthesis; fatty acid synthase inhibitor; Salinispora; thiolactone ring; thiotetronate antibiotics

Funding

  1. National Institutes of Health (NIH) [R01-AI047818]

Ask authors/readers for more resources

Thiolactomycin (TLM) belongs to a class of rare and unique thiotetronate antibiotics that inhibit bacterial fatty acid synthesis. Although this group of natural product antibiotics was first discovered over 30 years ago, the study of TLM biosynthesis remains in its infancy. We recently discovered the biosynthetic gene cluster (BGC) for TLM from the marine bacterium Salinispora pacifica CNS-863. Here, we report the investigation of TLM biosynthetic logic through mutagenesis and comparative metabolic analyses. Our results revealed that only four genes (tlmF, tlmG, tlmH, and tlmI) are required for the construction of the characteristic -thiolactone skeleton of this class of antibiotics. We further showed that the cytochrome P450 TlmF does not directly participate in sulfur insertion and C-S bond formation chemistry but rather in the construction of the five-membered thiolactone ring as, upon its deletion, we observed the alternative production of the six-membered -thiolactomycin. Our findings pave the way for future biochemical investigation of the biosynthesis of this structurally unique group of thiotetronic acid natural products.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available