4.6 Article

Spirooxazine molecular switches with nonlinear optical responses as selective cation sensors

Journal

RSC ADVANCES
Volume 7, Issue 2, Pages 642-650

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ra25478k

Keywords

-

Funding

  1. 12th Five-Year Science and Technology Research Project of the Education Department of Jilin Province [[2016] 494]
  2. National Natural Science Foundation of China [21173035]

Ask authors/readers for more resources

Spirooxazine, a photochromic material, can transform into metallic open-form merocyanine by molecular switching, giving rise to large contrasts in its second-order nonlinear optical (NLO) properties. The switching properties are particularly large when various metal ions (Li+, Na+, K+, Mg2+, Ca2+, Fe2+, Zn2+, and Ag+) are introduced, as evidenced by density functional theory calculations, which show that the spirooxazine undergoes a pronounced change in geometry accompanied by formation of a larger pi-conjugated system. The resultant merocyanine derivatives have 10-21-fold higher static second-order NLO responses. Spirooxazine can therefore be used as a powerful and multi-use detection tool. The large first hyperpolarizability (beta(tot)) is shown to rely on the alkaline earth metal, causing beta(tot) values to increase nearly 21-fold, as evidenced by the larger charge distribution, lower transition energy, and separate distribution of first hyperpolarizability density. In contrast, variation of beta(tot) in the Fe2+ derivative is not obvious, owing to stronger complexation, a larger amount of charge transferred from the napthoxazine moiety to the metal, and the reduction in N center dot center dot center dot O distance between the ligand heads. Therefore, spiropyran-to-merocyanine molecular switching can be used to distinguish alkaline earth metals and determine the efficiency of cation detection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available