4.1 Review

Coronary Microcirculatory Dysfunction in Human Cardiomyopathies A Pathologic and Pathophysiologic Review

Journal

CARDIOLOGY IN REVIEW
Volume 25, Issue 4, Pages 165-178

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/CRD.0000000000000140

Keywords

dilated cardiomyopathy; ischemia; hypertrophic cardiomyopathy; restrictive cardiomyopathy; aging; coronary microvessels; nitric oxide availability; reactive oxygen species; inflammation; adhesion molecules; genetic diseases

Funding

  1. Hungarian National Science Research Fund [OTKA K108444]

Ask authors/readers for more resources

Cardiomyopathies are a heterogeneous group of diseases of the myocardium. The term cardiomyopathy involves a wide range of pathogenic mechanisms that affect the structural and functional states of cardiomyocytes, extravascular tissues, and coronary vasculature, including both epicardial coronary arteries and the microcirculation. In the developed phase, cardiomyopathies present with various clinical symptoms: dyspnea, chest pain, palpitations, swelling of the extremities, arrhythmias, and sudden cardiac death. Due to the heterogeneity of cardiomyopathic patterns and symptoms, their diagnosis and therapies are great challenges. Despite extensive research, the relation between the structural and functional abnormalities of the myocardium and the coronary circulation are still not well understood in the various forms of cardiomyopathy. The main pathological characteristics of cardiomyopathies and the coronary microcirculation develop in a progressive manner due to (1) genetic-immunologic-systemic factors; (2) comorbidities with endothelial, myogenic, metabolic, and inflammatory changes; (3) aging-induced arteriosclerosis; and (4) myocardial fibrosis. The aim of this review is to summarize the most important common pathological features and/or adaptations of the coronary microcirculation in various types of cardiomyopathies and to integrate the present understanding of the underlying pathophysiological mechanisms responsible for the development of various types of cardiomyopathies. Although microvascular dysfunction is present and contributes to cardiac dysfunction and the potential outcome of disease, the current therapeutic approaches are not specific for the given types of cardiomyopathy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available