4.3 Article

MicroRNA-126a-5p enhances myocardial ischemia-reperfusion injury through suppressing Hspb8 expression

Journal

ONCOTARGET
Volume 8, Issue 55, Pages 94172-94187

Publisher

IMPACT JOURNALS LLC
DOI: 10.18632/oncotarget.21613

Keywords

microRNA-126a-5p; myocardium; ischemia-reperfusion injury; Hspb8; H9C2 cells

Funding

  1. National Natural Science Foundation of China [81770306, 81170113, 81471868, 81370252]

Ask authors/readers for more resources

Previously, we found several genes are involved in myocardial ischemia-reperfusion (M-I/R) injury. In this report, we first developed a mouse model of M-I/R injury and demonstrated microRNA-126a-5p was associated with the M-I/R injury by using high-throughput microRNA expression analysis. We further investigated the expression and function of microRNA-126a-5p during mouse M-I/R injury. We observed high expression of microRNA-126a-5p in the M-I/R mice and increased levels of LDH and CK-MB (damage markers) in the serum. H2O2 and hypoxia/reoxygenation (H/R) treatment significantly increased the expression of microRNA-126a-5p in H9C2 cells in concentration- and time-dependent manners. Moreover, microRNA-126a-5p overexpression in H9C2 cells inhibited cell viability but increased LDH release and caspase 3 activity. Cardiac function analysis based on the measurements of hemodynamic parameters showed that microRNA-126a-5p expression ablation in M-I/R injured mice led to the reversal of the symptoms caused by M-I/R injury. Transesophageal echocardiography also revealed that the values of LVIDd and LVIDs were decreased while the values of LVFS% and LVEF% were increased in M-I/R injured mice after treatment with microRNA-126a-5p inhibitor, compared with the M-I/R injured mice treated with the control. Bioinformatic analysis demonstrated that Hspb8, a protective protein in myocardium, was the target of microRNA-126a-5p. Thus, these findings indicated that microRNA-126a-5p was up-regulated in mouse M-I/R model and promoted M-I/R injury in vivo through suppressing the expression of Hspb8, which may shed light on the development of potential therapeutic target for M-I/R injury.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available