4.3 Article

MiR-23a modulates X-linked inhibitor of apoptosis-mediated autophagy in human luminal breast cancer cell lines

Journal

ONCOTARGET
Volume 8, Issue 46, Pages 80709-80721

Publisher

IMPACT JOURNALS LLC
DOI: 10.18632/oncotarget.21080

Keywords

miR-23a; autophagy; XIAP; breast cancer

Funding

  1. National Nature Science Foundation of China [81472493, 81572305, 81372476]
  2. Anhui Medical University [2013xkj006]
  3. Anhui provincial academic and technical leader reserve candidate [2016H074]
  4. Key Program of Outstanding Young Talents in Higher Education Institutions of Anhui [gxyqZD2016046]
  5. Second affiliated Hospital of Anhui Medical University [2014KA02]

Ask authors/readers for more resources

Autophagy is a conserved multi-step lysosomal process that is induced by diverse stimuli including cellular nutrient deficiency. X-linked inhibitor of apoptosis (XIAP) promotes cell survival and recently has been demonstrated to suppress autophagy. Herein, we examined regulation of XIAP-mediated autophagy in breast cancer cells and determined the underlying molecular mechanism. To investigate this process, autophagy of breast cancer cells was induced by Earle's balanced salt solution (EBSS). We observed discordant expression of XIAP mRNA and protein in the autophagic process induced by EBSS, suggesting XIAP may be regulated at a post-transcriptional level. By scanning several miRNAs potentially targeting XIAP, we observed that forced expression of miR-23a significantly decreased the expression of XIAP and promoted autophagy, wherever down-regulation of miR-23a increased XIAP expression and suppressed autophagy in breast cancer cells. XIAP was confirmed as a direct target of miR-23a by reporter assay utilizing the 3'UTR of XIAP. In vitro, forced expression of miR-23a promoted autophagy, colony formation, migration and invasion of breast cancer cell by down-regulation of XIAP expression. However, miR-23a inhibited apoptosis of breast cancer cells independent of XIAP. Xenograft models confirmed the effect of miR-23a on expression of XIAP and LC3 and that miR-23a promoted breast cancer cell invasiveness. Therefore, our study demonstrates that miR-23a modulates XIAP-mediated autophagy and promotes survival and migration in breast cancer cells and hence provides important new insights into the understanding of the development and progression of breast cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available