4.6 Article

Electroless Deposition and Ignition Properties of Si/Fe2O3 Core/Shell Nanothermites

Journal

ACS OMEGA
Volume 2, Issue 7, Pages 3596-3600

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.7b00652

Keywords

-

Funding

  1. Army Research Office [W911NF-14-1-0271]
  2. Office of Naval Research [N00014-15-1-2028]

Ask authors/readers for more resources

Thermite, a composite of metal and metal oxide, finds wide applications in power and thermal generation systems that require high-energy density. Most of the researches on thermites have focused on using aluminum (Al) particles as the fuel. However, Al particles are sensitive to electrostatic discharge, friction, and mechanical impact, imposing a challenge for the safe handling and storage of Al-based thermites. Silicon (Si) is another attractive fuel for thermites because of its high-energy content, thin native oxide layer, and facile surface functionality. Several studies showed that the combustion properties of Si-based thermites are comparable to those of Al-based thermites. However, little is known about the ignition properties of Si-based thermites. In this work, we determined the reaction onset temperatures of mechanically mixed (MM) Si/Fe2O3 nanothermites and Si/Fe2O3 core/shell (CS) nanothermites using differential scanning calorimetry. The Si/Fe2O3 CS nanothermites were prepared by an electroless deposition method. We found that the Si/Fe2O3 CS nanoparticles (NPs) had a lower reaction onset temperature (similar to 550 degrees C) than the MM Si/Fe2O3 nanothermites (> 650 degrees C). The onset temperature of the Si/Fe2O3 CS nanothermites is also insensitive to the size of the Si core NP. These results indicate that the interfacial contact quality between Si and Fe2O3 is the dominant factor for determining the ignition properties of thermites. Finally, the reaction onset temperature of the Si/Fe2O3 CS NPs is comparable to that of the commonly used Al-based nanothermites, suggesting that Si is an attractive fuel for thermites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available