4.7 Article

Anisotropic Elastoplasticity for Cloth, Knit and Hair Frictional Contact

Journal

ACM TRANSACTIONS ON GRAPHICS
Volume 36, Issue 4, Pages -

Publisher

ASSOC COMPUTING MACHINERY
DOI: 10.1145/3072959.3073623

Keywords

MPM; elastoplasticity; friction; cloth; knit; hair

Funding

  1. DoD [W81XWH-15-1-0147]

Ask authors/readers for more resources

The typical elastic surface or curve simulation method takes a Lagrangian approach and consists of three components: time integration, collision detection and collision response. The Lagrangian view is beneficial because it naturally allows for tracking of the codimensional manifold, however collision must then be detected and resolved separately. Eulerian methods are promising alternatives because collision processing is automatic and while this is effective for volumetric objects, advection of a codimensional manifold is too inaccurate in practice. We propose a novel hybrid Lagrangian/Eulerian approach that preserves the best aspects of both views. Similar to the Drucker-Prager and Mohr-Coulomb models for granular materials, we define our collision response with a novel elastoplastic constitutive model. To achieve this, we design an anisotropic hyperelastic constitutive model that separately characterizes the response to manifold strain as well as shearing and compression in the directions orthogonal to the manifold. We discretize the model with the Material Point Method and a novel codimensional Lagrangian/Eulerian update of the deformation gradient. Collision intensive scenarios with millions of degrees of freedom require only a few minutes per frame and examples with up to one million degrees of freedom run in less than thirty seconds per frame.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available