4.7 Article

Hybrid non-dominated sorting genetic algorithm with adaptive operators selection

Journal

APPLIED SOFT COMPUTING
Volume 56, Issue -, Pages 1-18

Publisher

ELSEVIER
DOI: 10.1016/j.asoc.2017.01.056

Keywords

Multiobjective optimization; Evolutionary computation; Multiobjective evolutionary algorithms (MOEAs); Pareto optimality; Adaptive operator selection

Ask authors/readers for more resources

Multiobjective optimization entails minimizing or maximizing multiple objective functions subject to a set of constraints. Many real world applications can be formulated as multi-objective optimization problems (MOPs), which often involve multiple conflicting objectives to be optimized simultaneously. Recently, a number of multi-objective evolutionary algorithms (MOEAs) were developed suggested for these MOPs as they do not require problem specific information. They find a set of non-dominated solutions in a single run. The evolutionary process on which they are based, typically relies on a single genetic operator. Here, we suggest an algorithm which uses a basket of search operators. This is because it is never easy to choose the most suitable operator for a given problem. The novel hybrid non-dominated sorting genetic algorithm (HNSGA) introduced here in this paper and tested on the ZDT (Zitzler-Deb-Thiele) and CEC'09 (2009 IEEE Conference on Evolutionary Computations) benchmark problems specifically formulated for MOEAs. Numerical results prove that the proposed algorithm is competitive with state-of-the-art MOEAs. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available