4.6 Article

Architecture and permeability of post-cytokinesis plasmodesmata lacking cytoplasmic sleeves

Journal

NATURE PLANTS
Volume 3, Issue 7, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nplants.2017.82

Keywords

-

Categories

Funding

  1. Region Aquitaine
  2. PEPS (Initial Support for Exploratory Projects)
  3. National Agency for Research [ANR-14-CE19-0006-01]
  4. Region Aquitaine [2011 13 04 007 PFM]

Ask authors/readers for more resources

Plasmodesmata are remarkable cellular machines responsible for the controlled exchange of proteins, small RNAs and signalling molecules between cells. They are lined by the plasma membrane (PM), contain a strand of tubular endoplasmic reticulum (ER), and the space between these two membranes is thought to control plasmodesmata permeability. Here, we have reconstructed plasmodesmata three-dimensional (3D) ultrastructure with an unprecedented level of 3D information using electron tomography. We show that within plasmodesmata, ER-PM contact sites undergo substantial remodelling events during cell differentiation. Instead of being open pores, post-cytokinesis plasmodesmata present such intimate ER-PM contact along the entire length of the pores that no intermembrane gap is visible. Later on, during cell expansion, the plasmodesmata pore widens and the two membranes separate, leaving a cytosolic sleeve spanned by tethers whose presence correlates with the appearance of the intermembrane gap. Surprisingly, the post-cytokinesis plasmodesmata allow diffusion of macromolecules despite the apparent lack of an open cytoplasmic sleeve, forcing the reassessment of the mechanisms that control plant cell-cell communication.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available