4.6 Article

New role of PCSK9 in atherosclerotic inflammation promotion involving the TLR4/NF-κB pathway

Journal

ATHEROSCLEROSIS
Volume 262, Issue -, Pages 113-122

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.atherosclerosis.2017.04.023

Keywords

PCSK9; Atherosclerosis; Inflammation; Macrophage; TLR4/ /NF-kappa B

Funding

  1. National Natural Science Foundation of China [1200217, 81670429]
  2. Educational Department of Hunan Province Fund for Distinguished Young Scholars [16B228]
  3. Visiting Scholar Foundation of Key Laboratory of Biorheological Science and Technology (Chongqing University)
  4. Ministry of Education [CQKLBST-2015-004]
  5. Construct Program of the Basic Medicine Key Discipline in Hunan Province

Ask authors/readers for more resources

Background and aims: Proprotein convertase subtilisin/kexin 9 (PCSK9) has emerged as a popular target in the development of new cholesterol-lowering drugs and therapeutic interventions for atherosclerosis. PCSK9 could accelerate atherosclerosis through mechanisms beyond the degradation of the hepatic lowdensity lipoprotein receptor. Several clinical studies suggested that PCSK9 is involved in atherosclerotic inflammation. Accordingly, this study aimed to explore the role of PCSK9 in vascular inflammation that promotes atherosclerotic progression. Methods: We examined whether PCSK9 silencing via transduction with the lentivirus-mediated PCSK9 shRNA (LV-PCSK9 shRNA) vector affects the formation of vascular lesions in hyperlipidemia-induced atherosclerosis in apolipoprotein E knockout (apoE KO) mice. In vitro, the effects of PCSK9 on oxLDLinduced macrophages inflammation were investigate using LV-PCSK9 and LV-PCSK9 shRNA for PCSK9 overexpression and PCSK9 silencing. Results: Immunohistochemical analysis showed that PCSK9 expression increased within atherosclerotic plaques in apoE KO mice. These in vivo results showed that the LV-PCSK9 shRNA group of mice developed less aortic atherosclerotic plaques compared with the control group. These lesions also had the reduced number of macrophages and decreased expression of vascular inflammation regulators, such as tumor necrosis factor-alpha, interleukin 1 beta, monocyte chemoattractant protein-1, toll-like receptor 4 and nuclear factor kappa B (NF-kappa B). We further showed that PCSK9 overexpression in macrophages in vitro increased the secretion of oxLDL-induced proinflammatory cytokines. PCSK9 overexpression upregulated TLR4 expression and increased p-I kappa B alpha levels, IkB alpha degradation, and NF-kappa B nuclear translocation in macrophages, but PCSK9 knockdown had the opposite effects in oxLDL-treated macrophages. Conclusions: PCSK9 gene interference could suppress atherosclerosis directly through decreasing vascular inflammation and inhibiting the TLR4/NF-kappa B signaling pathway without affecting plasma cholesterol level in high-fat diet-fed apoE KO mice. PCSK9 may be an inflammatory mediator in the pathogenesis of atherosclerosis. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available